Как измеряется сопротивление изоляции. Измерение сопротивления изоляции кабелей и проводов

На основе статьи "Measurement of insulation resistance (IR) - 2", http://electrical-engineering-portal.com

1. Значения сопротивления изоляции для электрического оборудования и систем

(Стандарт PEARL / NETA MTS-1997 Таблица 10.1)

Номинальное максимальное напряжение оборудования

Класс мегомметра

Правило 1 МОм для значения сопротивления изоляции оборудования

В зависимости от номинального напряжения оборудования:

< 1 кВ = не менее 1 МОм
> 1 кВ = 1 МОм на 1 кВ

В соответствии с правилами IE Rules - 1956

Когда в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 1000 В, сопротивление изоляции высоковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). Средневольтные и низковольтные установки - Если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ.

Средневольтные и низковольтные установки - если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards).

В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ

2. Значение сопротивления изоляции для трансформатора

Тестирование сопротивления изоляции необходимо для определения сопротивления изоляции индивидуальных обмоток относительно земли или между индивидуальными обмотками. При таком тестировании сопротивление изоляции обычно либо измеряется непосредственно в МОм, либо рассчитывается, исходя из прикладываемого напряжения и величины тока утечки.

При измерении сопротивления изоляции рекомендуется всегда заземлять корпус (и сердечник). Замкните накоротко каждую обмотку трансформатора на выводах проходного изолятора. После этого проведите измерение сопротивления между каждой обмоткой и всеми остальными заземленными обмотками.


Тестирование сопротивления изоляции: между высоковольтной стороной и землей, и между высоковольтной и низковольтной сторонами.
HV1 (2, 3) — Низковольтный 1 (2, 3); LV1 (2, 3) — Высоковольтный 1 (2, 3))

При измерении сопротивления изоляции никогда не оставляйте незаземленными обмотки трансформатора. Для измерения сопротивления заземленной обмотки необходимо снять с нее глухое заземление. Если снять заземление невозможно, как в случае некоторых обмоток с глухозаземленными нейтралями, сопротивление изоляции такой обмотки будет невозможно измерить. Считайте их частью заземленного участка цепи.

Необходимо проводить тестирование между обмотками и между обмоткой и землей (E). На трехфазных трансформаторах необходимо тестировать обмотку (L1, L2, L3) за вычетом заземления для трансформаторов с соединением «треугольник» или обмотку (L1, L2, L3) с заземлением (Е) и нейтралью (N) для трансформаторов с соединением «звезда».

Значение сопротивления изоляции для трансформатора

Где С = 1,5 для маслозаполненных трансформаторов с масляным баком, 30 для маслозаполненных трансформаторов без масляного бака или для сухих трансформаторов.

Коэффициент поправки на температуру (относительно 20°C)

Пример для трехфазного трансформатора 1600 КВА, 20 кВ / 400 В :

  • значение сопротивления изоляции на высоковольтной стороне = (1,5 х 20000) / √1600 = 16000 / 40 = 750 МОм при 20°C;
  • значение сопротивления изоляции на низковольтной стороне = (1,5 х 400) / √1600 = 320 / 40 = 15 МОм при 20°C;
  • значение сопротивления изоляции при 30°C = 15 х 1,98 = 29,7 МОм.

Сопротивление изоляции обмотки трансформатора

Значение сопротивления изоляции трансформаторов

Напряжение

Напряжение тестирования (постоянный ток), низковольтная сторона

Напряжение тестирования (постоянный ток), высоковольтная сторона

Минимальное значение сопротивления изоляции

6,6 кВ - 11 кВ

11 кВ - 33 кВ

33 кВ - 66 кВ

66 кВ - 132 кВ

132 кВ - 220 кВ

Проведение измерения сопротивления изоляции трансформатора:

  • отключите трансформатор и отсоедините перемычки и молниеотводы;
  • разрядите межвитковую емкость;
  • полностью очистите все проходные изоляторы;
  • замкните обмотки накоротко;
  • защитите выводы во избежание поверхностной утечки по изоляторам выводов;
  • запишите окружающую температуру;
  • подсоедините испытательные провода (избегайте дополнительных соединений);
  • подайте испытательное напряжение и запишите показания. Значение сопротивления изоляции через 60 секунд после подачи испытательного напряжения принимается в качестве сопротивления изоляции трансформатора при температуре проведения тестирования;
  • вывод нейтрали трансформатора во время тестирования должен быть отсоединен от земли;
  • также во время тестирования должны быть отсоединены все соединения с землей молниеотвода на низковольтной стороне;
  • из-за индуктивных характеристик трансформатора показания сопротивления изоляции необходимо снимать только после стабилизации испытательного тока;
  • не снимайте показания сопротивления, когда трансформатор находится в условиях вакуума.

Подключения трансформатора при проведении тестирования сопротивления изоляции (не меньше 200 МОм)

Трансформатор с двумя обмотками

2. Высоковольтная обмотка - (низковольтная обмотка + земля)
3. Низковольтная обмотка - (высоковольтная обмотка + земля)

Трансформатор с тремя обмотками
1. Высоковольтная обмотка - (низковольтная обмотка + обмотка ответвления + земля)
2. Низковольтная обмотка - (высоковольтная обмотка + обмотка ответвления + земля)
3. (Высоковольтная обмотка + низковольтная обмотка + обмотка ответвления) - земля
4. Обмотка ответвления - (высоковольтная обмотка + низковольтная обмотка + земля)

Автотрансформатор (две обмотки)
1. (Высоковольтная обмотка + низковольтная обмотка) - земля

Автотрансформатор (три обмотки)
1. (Высоковольтная обмотка + низковольтная обмотка) - (обмотка ответвления + земля)
2. (Высоковольтная обмотка + низковольтная обмотка + обмотка ответвления) - земля
3. Обмотка ответвления - (высоковольтная обмотка + низковольтная обмотка + земля)

Для любой изоляции измеренное сопротивление изоляции не должно быть меньше :

  • высоковольтная обмотка - земля 200 МОм;
  • низковольтная обмотка - земля 100 МОм;
  • высоковольтная обмотка - низковольтная обмотка 200 МОм.

Факторы, влияющие на значение сопротивления изоляции трансформатора

На значение сопротивления изоляции трансформаторов влияет следующее:

  • состояние поверхности проходного изолятора вывода;
  • качество масла;
  • качество изоляции обмотки;
  • температура масла;
  • длительность использования и значение испытательного напряжения.

3. Значение сопротивления изоляции для переключателя выходных обмоток

  • сопротивление изоляции между высоковольтной и низковольтной обмотками, а также между обмотками и землей;
  • минимальное значение сопротивления для переключателя выходных обмоток составляет 1000 Ом на один вольт рабочего напряжения.

Для измерения сопротивления обмотки электродвигателя с заземлением (Е) используется тестер изоляции.

  • для номинального напряжения ниже 1 кВ измерение проводится мегомметром на 500 В постоянного тока;
  • для номинального напряжения выше 1 кВ измерение проводится мегомметром на 1000 В постоянного тока;
  • в соответствии с IEEE 43, статья 9.3, следует применять следующую формулу:
    минимальное значение сопротивления изоляции (для вращающейся машины) = (Номинальное напряжение (В) / 1000) +1.


В соответствии со стандартом IEEE 43 1974, 2000

Пример 1: Для трехфазного электродвигателя 11 кВ

  • значение сопротивления изоляции = 11 + 1 = 12 МОм, но в соответствии с IEEE43 должно быть 100 МОм.

Пример 2: Для трехфазного электродвигателя 415 В

  • значение сопротивления изоляции = 0,415 + 1 = 1,41 МОм, но в соответствии с IEEE43 должно быть 5 МОм;
  • в соответствии с IS 732 минимальное значение сопротивления изоляции для электродвигателя = (20 х Напряжение (р-р)) / (1000 + 2 х кВт).

Значение сопротивления изоляции электродвигателя в соответствии с NETA ATS 2007. Раздел 7.15.1

Шильдик электродвигателя (В)

Испытательное напряжение

Минимальное значение сопротивления изоляции

500 В постоянного тока

1000 В постоянного тока

1000 В постоянного тока

1000 В постоянного тока

2500 В постоянного тока

2500 В постоянного тока

2500 В постоянного тока

5000 В постоянного тока

15000 В постоянного тока

Значение сопротивления изоляции погружного электродвигателя

5. Значение сопротивления изоляции для электрических кабелей и проводки

Для тестирования изоляции необходимо отсоединить кабели от панели или оборудования, а также от источника электропитания. Проводку и кабели следует тестировать друг относительно друга (фаза с фазой) с кабелем заземления (Е). Ассоциация IPCEA (Insulated Power Cable Engineers Association) предлагает формулу определения минимальных значений сопротивления изоляции.

R = K x Log 10 (D/d)

R = Значение сопротивления изоляции в МОм на 305 метров кабеля
К = Постоянная изоляционного материала. (Электроизоляционная лакоткань = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000)
D = Внешний диаметр изоляции проводника для одножильного провода или кабеля (D = d + 2c + 2b диаметр одножильного кабеля)
d = Диаметр проводника
c = Толщина изоляции проводника
b = Толщина изолирующей оболочки

Высоковольтное тестирование нового кабеля XLPE (в соответствии со стандартом ETSA)

Кабели 11 кВ и 33 кВ между сердечником и землей (в соответствии со стандартом ETSA


Измерение значения сопротивления изоляции (между проводниками (перекрестная изоляция))

  • первый проводник, для которого проводится измерение перекрестной изоляции, необходимо подключить к выводу Line мегомметра. Другие проводники соединяются вместе (с помощью зажимов типа «крокодил») и подсоединяются к выводу Earth мегомметра. На другом конце проводники не соединяются;
  • после этого поверните ручку или нажмите кнопку мегомметра. На дисплее измерительного прибора будет показано сопротивление изоляции между проводником 1 и остальными проводниками. Показания сопротивления изоляции следует записать;
  • потом подсоедините к выводу Line мегомметра другой проводник, а другие проводники соедините с выводом заземления мегомметра. Проведите измерение.

Измерение значения сопротивления изоляции (изоляция между проводником и землей)

  • подсоедините тестируемый проводник к выводу Line мегомметра;
  • соедините вывод Earth мегомметра с землей.;
  • поверните ручку или нажмите кнопку мегаомметра. На дисплее измерительного прибора будет показано сопротивление изоляции проводников. После поддержания испытательного напряжения в течение минуты до получения стабильных показаний следует записать значение сопротивления изоляции.

Измеряемые значения:

  • если во время периодического тестирования получено сопротивление изоляции подземного кабеля при соответствующей температуре от 5 МОм до 1 МОм на километр, данный кабель должен быть включен в программу замены;
  • если измеренное сопротивление изоляции подземного кабеля при соответствующей температуре от 1000 кОм до 100 кОм на километр, данный кабель следует заменить срочно, в течение года;
  • если измеренное сопротивление изоляции кабеля меньше 100 кОм на километр, данный кабель следует заменить немедленно как аварийный.

6. Значение сопротивления изоляции для линии передачи/распределительной линии

7. Значение сопротивления изоляции для шины панели

Значение сопротивления изоляции для панели = 2 х номинальное напряжение панели в кВ
Например, для панели 5 кВ минимальное сопротивление изоляции 2 х 5 = 10 МОм.

8. Значение сопротивление изоляции для оборудования подстанции

Обычными значениями сопротивления для оборудования подстанции являются:

Типовое значение сопротивление изоляции для оборудования подстанции

Оборудование

Класс мегомметра

Минимальное значение сопротивления изоляции

Автоматический выключатель

(Фаза - Земля)

(Фаза - Фаза)

Цепь управления

(Первичная - Земля)

(Вторичная - Фаза)

Цепь управления

Изолятор

(Фаза - Земля)

(Фаза - Фаза)

Цепь управления

(Фаза - Земля)

Электродвигатель

(Фаза - Земля)

Распределительное устройство LT

(Фаза - Земля)

Трансформатор LT

(Фаза - Земля)

Значение сопротивления изоляции оборудования подстанции в соответствии со стандартом DEP:

Оборудование

Измерение

Значение сопротивления изоляции на момент ввода в эксплуатацию (МОм)

Значение сопротивления изоляции на момент обслуживания (МОм)

Распределительное устройство

Высоковольтная шина

Низковольтная шина

Низковольтная проводка

Кабель (минимально 100 метров)

(10 х кВ) / км

Электродвигатель и генератор

Фаза - Земля

Трансформатор, погруженный в масло

Высоковольтный и низковольтный

Трансформатор, сухого типа

Высоковольтный

Низковольтный

Стационарное оборудование/инструменты

Фаза - Земля

5 кОм на вольт

1 кОм на вольт

Съемное оборудование

Фаза - Земля

Распределительное оборудование

Фаза - Земля

Автоматический выключатель

Цепь питания

2 МОм на кВ

Цепь управления

Цепь постоянного тока - Земля

Цепь LT - Земля

LT - Цепь постоянного тока

9. Значение сопротивления изоляции для бытовой/промышленной проводки

Низкое сопротивление между проводниками фазы и нейтрали или между находящимися под напряжением проводниками и землей будет приводить к возникновению тока утечки. Это приводит к ухудшению изоляции, а также к потерям энергии, что выльется в увеличение эксплуатационных расходов на установленную систему.
При обычных напряжениях электропитания сопротивление между фазой-фазой-нейтралью-землей никогда не должно быть меньше 0,5 МОм.

Кроме тока утечки из-за активного сопротивления изоляции существует также ток утечки из-за ее реактивного сопротивления, так как она работает как диэлектрик конденсатора. Этот ток не рассеивает никакой энергии и не является вредным, но нам нужно измерять активное сопротивление изоляции, поэтому для предотвращения включения в измерение реактивного сопротивления при тестировании используется напряжение постоянного тока.

Однофазная проводка

Тестирование сопротивления изоляции между фазой-нейтралью и землей должно выполняться на всей установке с отключенным включателем питания, при соединенных вместе фазе и нейтрали, с отключенными лампами и другим оборудованием, но при замкнутых автоматических выключателях и при всех замкнутых выключателях цепей.

Если используется переключение на два направления, будет тестироваться только один из двух проводов. Для тестирования другого провода необходимо задействовать оба переключателя на два направления и повторно протестировать систему. При необходимости установку можно тестировать как единое целое, но тогда необходимо получить значение не менее 0,5 МОм.


Трехфазная проводка

В случае очень большой установки, имеющей большое количество параллельных соединений с землей, можно ожидать более низкие показания. В этом случае необходимо повторить тестирование после разделения системы. Каждая из таких частей должна соответствовать минимальным требованиям.

Тестирование сопротивления изоляции должно выполняться между фазой-фазой-нейтралью-землей. Минимально допустимое значение для каждого теста 0,5 МОм.

Тестирование сопротивления изоляции для низкого напряжения

Минимальное значение сопротивления изоляции = 50 МОм / количество электрических розеток (все электрические точки с установочными элементами и вилками)

Минимальное значение сопротивления изоляции = 100 МОм / количество электрических розеток (все электрические точки без установочных элементов и вилок)

Меры безопасности при измерении сопротивления изоляции

Высокое испытательное напряжение может привести к повреждению такого электронного оборудования, как электронные стартеры люминесцентных ламп, сенсорные переключатели, переключатели с диммером, контроллеры электропитания. Поэтому подобное оборудование следует отсоединять.

Также следует отсоединять конденсаторы и индикаторные или контрольные лампы, потому что они могут стать причиной получения неточных результатов тестирования.

Если для проведения тестирования отсоединяется какое-либо оборудование, для него необходимо проводить собственное испытание изоляции с использованием напряжения, которое не приведет к их повреждению. Результат должен соответствовать указанному в стандарте Великобритании или быть не меньше 0,5 МОм, если не указан в стандарте.

Любое электротехническое изделие характеризуется целым рядом параметров. Для кабелей одним из основных является сопротивление изоляции. Существуют определенные нормы, которые обязательно учитываются при проектировании и монтаже, а также в процессе эксплуатации и проведения ТО трасс коммуникаций.

Каковы они нормы сопротивления изоляции кабеля? Дело в том, что по данному вопросу нередко встречаются разночтения. Это вызвано, по мнению автора, несколькими факторами.

Во-первых, кабель – понятие обобщенное. К этой группе изделий относятся образцы, используемые при прокладке линий силовых, сигнальных и телефонных. Кабеля могут быть коаксиальными (радиочастотными), контрольными, распределительными и общего назначения. То есть вариантов конструктивного исполнения защитных оболочек, отличающихся, в том числе, и толщиной, множество.

Во-вторых, на изготовление изоляции идут самые разные материалы – резина, пластики, даже пропитанная особым образом бумага. Хотя в более современных кабелях защита, как правило, комплексная, то есть сочетающая различные диэлектрические слои.

В-третьих, о сопротивлении какой изоляции идет речь – внешней оболочки или поверхностного покрытия жил?

В-четвертых, следует принимать во внимание и специфику монтажа и дальнейшей эксплуатации конкретного кабеля. Например, способ прокладки трассы – открытый или закрытый. Где она укладывается – в грунте, в лотках (вариантов достаточно). Чем характеризуется окружающая среда – предельная величина и перепады температуры, влажности, агрессивность и так далее.

Сопротивление изоляции – нормы для кабелей

Все значения – в МОм.

Кабеля силовые

  • Высоковольтные (более 1 000 В). Для них нормы не существует. То есть, чем сопротивление изоляции выше, тем лучше. Принято считать, что его значение не должно быть менее 10.
  • Низковольтные (до 1 000 В). По сути, речь идет об электропроводках и вторичных цепях различных установок. Минимальный предел значения сопротивления изоляции – 0,5. Более подробную информацию по данному вопросу можно найти в ПУЭ 7-ой редакции (табл. 1.8.34 и п. 1.8.37).

Кабеля контрольные, сигнальные, общего назначения

Это довольно большая группа изделий. К ней можно отнести кабеля, монтируемые для цепей управления, автоматики, питания эл/приводов, подключения защитных, распределительных устройств и так далее. Для них нормой считается, если сопротивление изоляции не ниже 1. Но это общепринятый показатель. Точное значение, в зависимости от , следует искать в его сопроводительной документации.

Для кабелей связи нормы сопротивления несколько иные, более «жесткие». Для линий городских н/ч – не менее 5, магистральных – 10 (МОм/км).

Если кабель имеет наружную оболочку из алюминия с покрытием из ПВХ, то норма сопротивления выше и равняется 20.

Примечание. ПУЭ оговаривает, что измерение сопротивления изоляции проводится мегаомметром с напряжением индуктора:

  • для кабелей в цепях не более 500 В – 500;
  • до 1 000 В – 1 000;
  • все остальные – 2 500.

Специалистам не нужно объяснять, что все требования к сопротивлению изоляции указываются в технических заданиях, ГОСТ и СНиП на определенный вид работы. Его величину несложно узнать по паспорту кабеля, а при необходимости контроля состояния изделия произвести соответствующее измерение. Специфика этой операции оговорена в п. 1.8.7. ПУЭ (7-я редакция).

В быту для оценки степени износа изоляции силового кабеля можно воспользоваться следующей таблицей, которая отражает ориентировочные усредненные нормы.

Так как непрофессионал не в состоянии учесть всех нюансов конструктивного исполнения изделия и его использования, этого, как правило, вполне достаточно, чтобы понять, стоит ли закладывать данный образец или он уже непригоден к эксплуатации. То есть отбраковать. Ну а если есть определенные сомнения, то нелишне проконсультироваться с профильным специалистом.

2016-08-22

Сопротивление изоляции — один из главнейших параметров кабелей и проводов, ведь в ходе эксплуатации силовые и сигнальные кабели всегда подвержены различным внешним воздействиям. Кроме того, помимо внешних воздействий, постоянно присутствует и влияние жил внутри кабеля друг на друга, их электрическое взаимодействие, что непременно приводит к появлению утечек. Добавив сюда факторы, влияющие на качество изоляции, мы получим более цельную картину.

По этим причинам кабели всегда защищаются диэлектрической изоляцией, к которой относятся: резина, пвх, бумага, масло и т. д. - в зависимости от назначения кабеля, от рабочего напряжения, от рода тока и т. д. Так, например, подземные распределительные телефонные линии выполняются бронированным лентой кабелем, а некоторые телекоммуникационные кабели заключают в оболочку из алюминия для защиты от внешних токовых помех.

Что касается диэлектрических свойств изоляции, то не только они влияют на выбор конкретного материала для того или иного кабеля. Не менее важна термостойкость: резина более стойка к высоким температурам, чем пластмасса, пластмасса — лучше чем бумага и т.д.

Так, изоляция кабеля — это защита жил от их влияния друг на друга, от короткого замыкания, от утечек, и от внешних воздействий со стороны окружающей среды. А сопротивление изоляции определяется величиной оного между жилами и между жилой и наружной поверхностью изолирующей оболочки (или между жилой и экраном).

Безусловно материал изоляции в процессе эксплуатации кабеля теряет свои былые качества, стареет, разрушается. И одним из показателей этих неблагоприятных изменений является снижение сопротивления изоляции постоянному току.

Сопротивление изоляции постоянному току для различных кабелей и проводов нормируется согласно их ГОСТ, что указывается в паспорте на конкретную кабельную продукцию: в лабораторных условиях фиксируется нормальное сопротивление изоляции при температуре окружающей среды в +20°C, после чего сопротивление приводится к длине кабеля в 1 км, что и указывается в технической документации.

Так, НЧ-кабели связи имеют минимальное нормируемое сопротивление 5 ГОм/км, а коаксиальные — до 10 ГОм/км. При замерах учитывают, что это приведенная длина для 1 км кабеля, соответственно кусок вдвое длиннее будет иметь вдвое меньшее сопротивление изоляции, а кусок вдвое более короткий — вдове большее. К тому же температура и влажность при замерах оказывают существенное влияние на текущее значение, так что необходимо вводить поправки, специалисты это знают.

Говоря о силовых кабелях, учитывают положения ПУЭ п. 1.8.40. Так, силовым кабелям цепей вторичной коммутации и осветительных электропроводок с напряжением до 1000 В приписывается норма от 0,5 МОм для каждой жилы между фазными проводами и между фазным и нулевым проводом и проводом защитного заземления. А для линий с напряжением от 1000 В и выше — норма сопротивления не указывается, но указывается ток утечки в мА.

Проводятся специальные испытания, при которых нормируется напряжение проверки. В соответствии с родом тока испытательного оборудования и назначением проверяемого кабеля, с учетом материала его изоляцией — . Так при помощи мегаомметра и оценивают качество изоляции высоковольтных кабелей.

Сопротивление изоляции в 1 МОм на киловольт рабочего напряжения кабеля считается приемлемым, то есть для кабеля, работающего под напряжением в 10 кВ сопротивление в 10 МОм будет принято нормальным по итогу испытаний мегаомметром с проверочным напряжением 2,5 кВ.

Измерения сопротивления изоляции проводят регулярно мегаомметром: на мобильных установках — раз в полгода, на объектах повышенной опасности — раз в год, на остальных объектах — раз в три года. Данными измерениями занимаются квалифицированные специалисты. В результате измерений специалистом составляется документ — акт установленного Ростехнадзором образца.

По итогу проверки делается заключение о том, нуждается ли объект в ремонте или его работоспособность соответствует требованиям проверки. Если требуется ремонт — проводят ремонт с целью восстановления сопротивления изоляции до нормы. Протокол составляется и по итогам ремонта, после очередных замеров мегаомметром.

Андрей Повный

Любой вид проводов и кабелей обладает специфическими, первичными и вторичными электрическими параметрами, которые эту продукцию характеризуют. Одним из главных параметров кабеля является сопротивление изоляции. Нормой сопротивления изоляции считаются данные, на которые ориентируются при выполнении работ по строительству, эксплуатации и обслуживанию кабелей.

По двум металлическим жилам протекает электрический ток, и на них все время оказывает разнообразное воздействие окружающая среда, в некоторых случаях даже опасное. Кроме этого, эти жилы сами влияют друг на друга. В результате этого металлические провода, у которых нет защиты, несут колоссальные потери из-за разнообразных утечек, вплоть до образования аварийных ситуаций.

Что такое изоляция жил, проводящих ток

Чтобы подобного рода негативные ситуации свелись к минимуму или значительно уменьшились, токопроводящие жилы в кабелях следует защитить при помощи изолирующего покрытия из материала, не проводящего электрический ток.

Материалом для создания изоляционных оболочек считается:

  • пластические массы;
  • бумага;
  • резина.

Также эти материалы можно комбинировать. Изоляция, которая используется для разных видов кабелей, имеет довольно значительное отличие как по используемым материалам, так и по принципам применения изолирующих покровов. На сегодняшний день выпускают большое количество кабельной продукции, которую используют для разнообразных нужд.

Разнообразие кабельной продукции

Различают кабели:

Эта продукция может отличаться друг от друга не только своими функциями, но и конструктивными и физическими характеристиками , разработанные применительно для той среды, в которой она будет использоваться. Большая потребность в проводных материалах, необходимых для разнообразных нужд, привела к тому, что были созданы различные модификации существующих на данный момент типов кабелей. Например, если подземные распределительные телефонные сети прокладываются непосредственно в грунте, применяемую в телефонной канализации конструкцию кабелей дополнительно усиливают, облачая их сердечник в металлические ленты брони. А также чтобы защитить жилы кабеля от внешних токов, его сердечник облачают в алюминиевую оболочку.

Что такое сопротивление изоляции

От того, в какой среде и в каких условиях будет использоваться изготавливаемая проводниковая продукция, зависит вид изолирующего материала. Например, чтобы изолировать при высоких температурах токопроводящие жилы, лучше всего использовать резину, чем другие материалы. Резина устойчива к таким температурным воздействиям, чем, например, обычная пластмасса.

Таким образом, использование изолирующих материалов кабельной продукции необходимо для защиты его токопроводящих жил от внешних и взаимных электрических влияний. Величину такого параметра для отдельно взятой жилы и всего сердечника в целом определяет величина сопротивления постоянному току, возникающей в цепи между жилами и каким-либо источником, к примеру, землей. Чтобы определить работоспособность и защищенность кабельной продукции используется термин «сопротивление изоляции».

Материалы, которые используются в кабелях в качестве изоляции, со временем стареют и начинают терять свои свойства . Поэтому даже от любого физического воздействия они могут разрушиться. Чтобы уточнить, как и в каких пределах могли измениться параметры изоляционного материала, требуется для сравнения знать норму на параметр изделия, которая устанавливается изготовителем.

Норма сопротивления изоляции

Как конкретная величина изделия сопротивление изоляции для разных марок кабеля закладывается в ГОСТ или ТУ на изготовление определенной кабельной продукции. Такая продукция, поставляемая для реализации, должна иметь паспорт с электрическими параметрами. Например, норма сопротивления изоляции для кабеля связи приводится к 1 км длины, причем температура окружающей среды для этих данных должна составлять +20 градусов.

Для городских низкочастотных кабелей связи норма сопротивления должна составлять не меньше 5000 Мом/км, для коаксиальных и магистральных симметричных кабелей норма сопротивления может достигать 10000 Мом/км . Оценивая состояние проверяемого кабеля, паспортные данные сопротивления изоляции используют только тогда, когда необходим пересчет их к длине действительного куска кабеля. При участке кабеля больше километра норму следует делить на эту длину. Если она меньше километра, то, соответственно, умножать.

Полученные в результате этого расчетные цифры часто используются для оценки кабельной линии. Следует помнить, что паспортные данные учитываются для температуры +20 градусов, поэтому необходимо делать поправки, проводя контрольные измерения на влажность и температуру.

Существуют такие марки кабельной продукции, у которых алюминиевая оболочка и шланговое полиэтиленовое покрытие. Для них определяют норму сопротивления изоляции между землей и оболочкой. Она обычно составляет 20 Мом/км. Чтобы использовать в работе этот норматив его необходимо пересчитать под действительную длину участка.

Для силового кабеля предусмотрены следующие положения по сопротивлению изоляции постоянному току:

  • у применяемых в сетях с напряжением более 1000 В силовых кабелях величина такого параметра не нормируется, но не может быть меньше 10 ОМ;
  • у применяемых в сетях с напряжением менее 1000 В силовых кабелях величина параметра не должна быть выше 0,5 Ом.

Для контрольных кабелей норма не может быть меньше 1 Ом .